A Note on Wavelet Subspaces
نویسنده
چکیده
The wavelet subspaces of the space of square integrable functions on the affine group with respect to the left invariant Haar measure dν are studied using the techniques from [9] with respect to wavelets whose Fourier transforms are related to Laguerre polynomials. The orthogonal projections onto each of these wavelet subspaces are described and explicit forms of reproducing kernels are established. Isomorphisms between wavelet subspaces are given.
منابع مشابه
Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...
متن کاملA New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
متن کاملMultiresolution approximation scale and time-shift subspaces
Multiresolution Approximation subspaces are L2(R)-subspaces defined for each scale over all time shifts, i.e., “scale subspaces”, while with respect to a given wavelet, the signal space L2(R) not only admits orthogonal scale subspaces basis, but orthogonal “time shift subspaces” basis as well. It is therefore natural to expect both scale subspaces and time shift subspaces to play a role in Wave...
متن کاملWavelet subspaces invariant under groups of translation operators
We study the action of translation operators on wavelet subspaces. This action gives rise to an equivalence relation on the set of all wavelets. We show by explicit construction that each of the associated equivalence classes is non-empty.
متن کاملThe Error Estimation of Sampling in Wavelet Subspaces
Following our former works on regular sampling in wavelet subspaces, the paper provides two algorithms to estimate the truncation error and aliasing error respectively when the theorem is applied to calculate concrete signals. Furthermore the shift sampling case is also discussed. Finally some important examples are calculated to show the algorithm. key words: sampling, scaling function, wavele...
متن کامل